
ID: 6.1d

Title: Parallel in Time: Trading CPU Cycles for Wall-Clock Time

Name: Berry, Lee

Affiliation: Oak Ridge National Laboratory

For many of the nonlinear time dependent problems of plasma physics, scalability ia major issue,
especially for continuum formulations. Plasma turbulence is one example. Even when using
state-of-the-art techniques, such as Newton-Krylov with effective preconditioners, scaling past the
tens of thousands of processor level is not obtained. This will be even more the case with future
HPCs as the number of CPUs increase, but with reduced memory per CPU and higher
communications overhead. One method for addressing this issue is the iterative parareal algorithm
developed by Maday and colleagues [CR Acad. Sci. I?Math. 332 (7) (2001) 661?668]. The
successful application of parareal to model plasma turbulence was reported in [D. Samaddar et al.,
J. Comput. Phys. 229 (18) (2010) 6558]. However, the implementation of parareal for any specific
problem can require substantial incremental coding at the parallelization level, and involves the
executing a series of procedures with varying degrees of parallelism. To make this process more
efficient, we implemented parareal using a light-weight Python framework [W. Elwasif, et al.,
Component-Based High- Performance Computing, Karlsruhe, Germany, 16-17 October 2008].
This component-based framework provides services that include workflow, file-based data
movement, and event publication and handling. This implementation provides a template for
developing other parareal applications. It also provided a platform for the development of
extensions to parareal. First, many of the parareal tasks that were being executed sequentially,
could be carried out in parallel. This leads to an event-based, data driven parareal that provides
reduced wall-clock times and may allow net speedups even for cases where parareal previously
failed. Secondly, CPU utilization where was increased for long runs by incrementing the
simulation interval to which parareal was being applied as intermediate time intervals converged.


